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Abstract 

Recently, multiprimary displays have been proposed by 
several authors. Contrary to conventional displays, such 
displays use more than three primaries to display a color. 
There are two main advantages to such a display: First, the 
additional degrees of freedom can be used to account for 
observer metamerism, and secondly, the color gamut of a 
multiprimary display is significantly larger than the device 
gamut of a comparable conventional display. The 
discounting of observer metamerism which has been dis­
cussed in (1) requires multispectral images. Unfortunately, 
multispectral images are not always available. Therefore, 
the focus of this paper is on finding optimized device 
control values for the display of tristimulus images. Due to 
the nature of the display, a triplet of tristimulus values can 
be displayed by a multitude of different control values, 
resulting in metameric colors with the desired control 
values. Each of these control values could be chosen to 
display the desired color. There is, however, a complication 
because human observers usually deviate from the standard 
observer and choosing control values randomly can cause 
visible artifacts. In this paper, we propose a method that 
guarantees that small changes of the tristimulus values 
correspond to small changes of the displayed color for 
arbitrary observers. The method first identifies the subset of 
feasible control values (output between 0% and 100%) that 
lead to the desired tristimulus values. In a second step, the 
center point of this subset is chosen as the desired color 
vector. 

Introduction 

The Multiprimary Display 
Today, most display devices use three primary colors to 

display a given color. For example, a CRT uses a red, a 
green and a blue phosphor to mix the colors that are 
displayed on a screen. This approach has a serious 
drawback, because not all colors can be displayed using one 
given set of primary colors. For example, it is impossible to 
display a red color on a CRT, that is more saturated than the 
red primary. And the situation gets worse, if a very 
saturated yellow has to be displayed. The reason for this is 
the limited gamut, that can be achieved using only three 
primaries. A few years back, the printing industry had to 
tackle the same problems. Not all colors could be printed 
using cyan, mangenta and yellow ink. The problem was 
solved by using additional inks, e.g. black ink for very dark 
portions of the image and special inks for colors that are 
needed in a given project, but cannot be achieved using the 
standard inks. 

A similar approach can be applied to a display device. 
Additional primaries can be used to expand the gamut of the 
display. In the following, such a device will be called a 
“multiprimary” display. Both at the Akasaka Natural Vision 
Research Center and at Aachen University of Technology 
multiprimary displays have been realized by using two 
commercial LCD projectors that project their images on the 
same screen. Geometrical distortion due to the slightly 
different positions of the two projectors are corrected by 
software. Each projector is modified by inserting additional 
interference filters. Due to these filters, six spectrally 
different primaries are created. Fig. 1 shows the primaries of 
the Akasaka multiprimary display. 

Because the display uses more than three primaries, it is 
often possible to display the same target color using 
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different metameric colors. In an earlier paper, we used this 
property for the discounting of observer metamerism. 
However, this approach requires a multispectral image as 
input and, therefore, cannot be used with a conventional 
tristimulus image.  

 

 

Figure 1. The six primaries of the multiprimary display 

The Influence of Observer Metamerism 
At first glance, the use of a tristimulus image appears to 

be much simpler, because it should be sufficient to use any 
of a number of possible metameric colors. Starting from this 
idea, a method using matrix switching was implemented. 
This method showed good results for natural images. 
However, using synthetic images, sometimes strong artifacts 
could be examined. This was most pronounced examining 
an image that showed an a*,b* plane of the CIE L*a*b* 
color space. In this image, it was possible to see, at which 
a*,b*-positions matrix switching took place. 

The reason for these artifacts is observer metamerism. 
Due to matrix switching approach, it is possible, that two 
very similar colors correspond to vastly different device 
control values, and therefore to very different spectra. These 
spectra, however, are almost metameric and for the standard 
observer the difference between these two colors appears to 
be very small. For a human observer, who deviates from the 
standard observer, however, these changes can be very 
pronounced.  

This is an rather unusual experience, usually the 
standard observer is a quite good description for an actual 
human observer. The reason for the unusual large influence 
of observer metamerism can be found in the nature of the 
device primaries. These primaries posses very steep flanks. 
Therefore even a small difference in the cone sensitivities of 
a human observer can cause large color differences.  

The aim of this paper is to propose a control method for 
a multiprimary display that avoids artifacts, that are caused 
by observer metamerism. 

Mathematical Model of the Display 
Any optimization involving a multiprimary display is -

of course- dependent on an accurate display model 
describing the relationship between the displays input 
signals and the color displayed for these input values. The 

input signals will be described using an input vector C and 
the resulting color by using its spectral power distribution 
s(λ). The use of a spectrum instead of simple XYZ values is 
necessary, because the influence of observer metamerism is 
important in the context of this paper. 

 

 

Figure 2. The bias of the multiprimary display 

 
There are several possible definitions for the control 

vector C. The most obvious choice would be to use the two 
projectors control signals Ci (Ci • {0, 1, 2, …, 255}) 
directly. This approach , however, is not optimal due to the 
influence of nonlinearities (gamma curve) and we choose a 
slightly different definition: 

C=(c1, c2, c3, c4, c5, c6)
T, 

where the control signals ci (0 • ci •1) are a linearized 
version of the original control values Ci. 
The model itself consists of 6 primaries pi(λ) and a bias 
b(λ), where the bias b(λ) is used to describe the rather high 
black level of the display. The bias can be seen in Fig. 2. 
Using these variables, the display output is calculated by: 
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In tristimulus XYZ space, this is equivalent to: 
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Optimal Control Values 

In this paper, an optimized method of calculating the 
control values for a multiprimary display is proposed. 
Therefore, it is necessary to define the properties of optimal 
control values. Control values will be considered optimal, if 
the following three conditions are fulfilled. 
1) The device control values need to be feasible. The 

algorithm used to calculate the device control values for 
an input XYZ vector must ensure, that each control 
signal has a value between 0 and 1. 
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2) 	 For the standard observer, the tristimulus values XYZ 
of the resulting color are the input XYZ values, that 
were used to calculate the control values. This is only 
possible, if the input XYZ values are within the gamut 
of the display. For an input vector that is not within the 
display gamut, gamut mapping is required. A method to 
determine whether an input vector is within the display 
gamut will be discussed in the next section. Gamut 
mapping, however, is not within the scope of this 
paper. 

3) 	 A gradual change of the input tristimulus values results 
in a gradual change of the perceived color for arbitrary 
observers. This can only be achieved, if the spectral 
change also is gradual. Therefore, a gradual change of 
the color perceived by an arbitrary observer can only be 
achieved by a gradual change of the device control 
values. 

Calculating the Device Gamut 

The second condition for optimal control values requires a 
method to check whether a control vector is within the 
gamut of the display. While the gamut of the multiprimary 
display is not obvious in XYZ space, it is quite easy to 
describe in device control space. Here, every control vector 
C where each component ci is a value between 0 and 1 is 
within the gamut of the display. Therefore, the display 
gamut is a hypercube in a six-dimensional space. By 
calculating the projection of this hypercube into the three­
dimensional tristimulus space (XYZ) the device gamut in 
XYZ can be determined. 

This transformation is strictly linear. Therefore, the 
convexity of the hypercube is preserved and the gamut in 
XYZ also is convex. This property allows an easy answer to 
the question, whether a given XYZ vector is within the 
device gamut by the following method. 

First, for each corner of the control hypercube (C, 
where all ci ε {0,1}) the corresponding XYZ values are 
calculated resulting in a set of tristimulus vectors CXYZ,i. The 
XYZ device gamut can now be determined by calculating 
the convex hull of these points. Please note, that same 
corners of the hypercube are projected into the interior of 
the tristimulus gamut. 

On the other hand, all of the faces of the tristimulus 
gamut correspond to faces of the hypercube and all edges of 
the gamut correspond to edges of the hypercube. 

Because each edge of the hypercube is described by a 
single control value ci, the corresponding edge is parallel to 
the respective primary vector PXYZ,i. Furthermore, each face 
of the gamut is defined by two primaries, and can be 
described by an offset oi,j and the face vectors FXYZ,i,j, which 
are calculated by: 

FXYZ,i,j 
= PXYZ,i x PXYZ,j, (3) 

where i < j and i,j ε {1, 2, …6}. The next step is to calculate 
a set of offsets oi,j,k for each face vector FXYZ,i,j, by calculating 
the scalar product of the face vector with each corner vector 
CXYZ,k: 

. oi,j,k 
= FXYZ,i,j CXYZ,k 

(4) 

Next, for each face vector FXYZ,i,j the maximum Mi,j an 
minimum mi,j offset is determined: 

mi,j = MIN(oi,j,k) (5) 

Mi,j = MAX(oi,j,k) 

Using this information, an effective method to check 
wheter an input tristimulus vector IXYZ is within the gamut of 
the display can be implemented. If and only if the input 
vector is within the gamut of the display the following 
inequations will be fulfilled: 

. mi,j ≤ FXYZ,i,j IXYZ,k 
≤ Mi,j 

(6) 

Reformulating the Problem 

Previously, the control signals of the multiprimary display 
were described by six-dimensional vectors, where each 
component corresponds to one control signal. This is not the 
only possible basis system for the description of the control 
vector. In fact, an alternative basis system allows to 
significantly simplify the problem of calculating optimized 
control signals. The first three components of the new basis 
system are used to describe the color information, while the 
remaining three components describe the metameric 
information (in relation to the standard observer). In the 
following, the construction of the new basis system will be 
described. 

To this end, the primary vectors PXYZ,i in equation 2 are 
combined into a 3x6 matrix P: 

SXYZ=BXYZ+ P . C (7) 

Because different control vectors C can correspond to 
the same XYZ vector, this equation, unfortunately, cannot 
be inverted. It is, however, possible to use the pseudo 
inverse P+ of the matrix P to calculate one possible solution. 
The columns of this pseudo inverse can be considered to be 
three basis vectors in a six-dimensional space. These basis 
vectors span the “color”-subspace of the control vectors. 
Using well known mathematical methods, it is possible to 
derive 3 additional six-dimensional basis vectors M1, M2 

and M3 that span the subspace orthogonal to the “color”­
subspace resulting in: 

.C = P+ (SXYZ - BXYZ) + m1 M1 + m
2 M2 + m

3 M3, (8) 

where m1, m2 and m3 are arbitrary values. 
Using this formulation, it is easy to find a display 

control vector that leads to a given XYZ vector. The only 
catch is that this vector needs to feasible. It was already 
mentioned that the valid control signals are located within a 
six-dimensional hyper-cube. This is also true in the new 
coordinate system, although the cube might be rotated and 
stretched. In the new basis system, the feasible device 
control vectors need to fulfill the following inequations: 
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where V i is used to denote the ith component of the vector 
I and 1 < i < 6. These equations can be reformulated as: 

. 
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As long as the input XYZ-vector is within the displays 
gamut, these inequations describe a three-dimensional 
volume in (m1, m2, m3)-space. Some examples are given in 
Fig. 3. All (m1, m2, m3)-vectors within these volumes lead to 
feasible display control vectors. 

Figure 3. Volumes of (m1, m2, m3)-vectors, that lead to feasible 
display control vectors for two sample XYZ vectors. 

Now, the question is, which point of this volume 
represents the optimal solution. A good solution is to choose 
the center of gravity, because the volume changes gradually 
with gradual changes of the input XYZ vectors. In the 
following a method to calculate this center of gravity will be 
presented. 

Calculating the Center of Gravity 

Representing Volumes 
First, a good way of representing the volumes of 

possible (m1, m2, m3)-vectors has to be found. One 
convenient representation is to describe the volume by using 
two fields corner and face. 

corner: This field contains a list of the (m1, m2, m3)­
coordinates of the corners of the volume. 

face: This is a field that contains a sorted list for each 
face of the volume. The list contains the indices of the 
corners defining the respective face. The indices are sorted 
to form a single convex polygon (no crossovers). 

Using this description, a unity cube in (m1, m2, m3)­
space is represented by: 

Index m1  m2  m3 Index m1  m2  m3 

1 0 0 0 5 1 0 0 
2 0 0 1 6 1 0 1 
3 0 1 0 7 1 1 0 
4 0 1 1 8 1 1 1 

corner 

face 

This description specifies, that the 3rd face of the cube is 
the polygon (0,0,0)-(0,1,0)-(1,1,0)-(1,0,0)-(0,0,0). Please 
note, that the sequence of the points is important, and 
(0,0,0)-(1,1,0)-(0,1,0)-(1,0,0)-(0,0,0) would not be per­
mitted, as this polygon is not convex. 

Determining the Volume Representation 
The determination of the volume representation of the 

volume of permitted (m1, m2, m3)-values requires two steps. 

corner data 
First, the corner data is determined. The corners of the 

volume are those places, where at least 3 faces meet. These 
positions can be calculated by replacing the inequations (1) 
describing the volume by the following equations. 

. 
-P+ (SXYZ - BXYZ) i = m1 M1 + m

2 
M

2 + m
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M
3 
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(11) 

.
1 - P+ (SXYZ - BXYZ) i = m1 M1 + m

2 
M

2 + m
3 

M
3
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These equations describe 2.6=12 planes in (m1, m2, m3)­
space. By choosing three of those planes and calculating the 
point of interception, a candidate corner is found. There are 
160 sensible sets of equations (No set may contain two 
equations for the same i, as there is no solution that fulfils 
the two equations a+b=1 and a+b=0 at the same time). 

All 160 solutions are either at the surface of the 
permitted volume or outside of the volume. Therefore it is 
necessary to use eq. 10 to check, which of these solutions 
are feasible. Also, any solutions, that appear more than once 
(e.g. because 4 or more planes intersect in one point) should 
be eliminated. The remaining feasible solutions form the 
corner data. 

(All calculations are done with computer precision 
only. Therefore, some solutions might appear to be infea­
sible that in reality are feasible. To avoid this problem, it is 
recommended to relax eq. 10 slightly. Similar problems 
arise during the process of eliminating multiple points. 

Index Point 1 Point 2 Point 3 Point 4 
1 1 2 4 3 
2 1 2 6 5 
3 1 3 7 5 

Index Point 1 Point 2 Point 3 Point 4 
4 2 4 8 6 
5 3 4 8 7 
6 5 6 8 7 
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Again, points that are very close together should be 
considered to be one point) 

face data 
The face data is determined next. For each of the 12 

equation given in (2) all corners are determined that fullfil 
this equation (consider numerical precision!). If there are 
more than 2 points for one equation, these points describe 
one entry in the face data structure. 

If an entry of the face data contains more than 3 points, 
it is necessary to determine an order. This can be done by 
the following algorithm: 
1) For each entry in face do the following 
2) 	 Copy all but one of the corner points of the entry into a 

help variable. The point that is not moved is the first 
subentry of the face entry. This point is used as the 
work point. 

3) 	 Find another entry in face, that contains the work point 
and shares exactly 1 point with the points contained in 
help. 

4) 	 The shared point is the next subentry of the processed 
entry of the face data. It is also the next work point. 

5) The new work point is removed from the help data. 
6) 	 As long as the help data contains more than one point, 

jump to step 3. 
7) 	 The last point contained in help is the last point of the 

processed face entry. 

Determining the Center of Gravity 
After deriving a description of volume of permitted 

(m1, m2, m3)-values, its center of gravity needs to be 
calculated. Unfortunately, there is no trivial solution for this 
problem. It is, however, quite simple to determine the center 
of gravity for an tetrahedron. And it is possible to cut the 
volume into tetrahedrons. Therefore, the determination of 
the center of gravity requires three steps: 

1) The volume is divided into tetrahedrons. 
2) 	 The center of gravity and volume of each tetrahedron is 

calculated. 
3) 	 The center of gravity of the original object is calculated 

as a weighted sum of the centers of gravity of all 
tetrahedrons. 

Because step one is the most complex, we will ignore it 
for the moment. 

The center of gravity G of a tetrahedron with the 
corners A, B, C, and D is given by: 

G = ¼ (A+B+C+D) (12) 

The volume of a tetrahedron can be calculated by: 

V=|(B-A).[(C-A) x (D-A)]|/6 (13) 

The center of gravity of a object P that consists of n 
tetrahedron with center of gravity Gi and volume Vi is given 
by: 

GP
= ∑i ∑ 

V

i

i

Vi 

Gi (13) 

Dividing the Volume Into Tetrahedrons 
The division of a volume into tetrahedrons requires the 

existence of a three-dimensional volume. This is important 
to mention, because the previous processing might lead to 
degenerated volume (all corners are within one plane, 
within one line or there is only one point.) These cases have 
to be addressed first. 

The last two cases can be identified by the number of 
corners involved (two corners, if only a line of permitted 
values is available or only one corner, if only one choice of 
(m1, m2, m3)-values is possible). In both cases, the 
calculation of the center of gravity is trivial. 

An important property of the volume to be divided, is 
convexity. The algorithm of dividing the volume is based 
on this property. 

First a random corner is chosen. This corner will be 
called basis point. Due to the convexity, a line that start 
from the basis point cannot intersect the surface of the 
volume more than once. Therefore it is possible to divide 
the volume into tetrahedrons, that all share this point. 

The next step is to examine all faces, whether they 
contain the basis point. If a face does not contain the basis 
point, we chose a random corner of the face as face basis 
point (e.g. the first entry in the respective face data 
structure.). 

Starting from the face basis point, we chose one corner 
c2 of the face that is adjacent to the face basis point (e.g. the 
second entry of the face data structure) and the next corner 
c3 adjacent to this point (here: the third entry of the face 
data structure). The first tetrahedron respective to this face 
is described by the basis point, the face basis point and these 
two points c1 and c2. The second tetrahedron is the 
tetrahedron consisting of the basis point, the face basis 
point, point c3 and the point c4 adjacent to c3 (here: the 
fourth entry of the face data structure). This is repeated, as 
long as the new point is different from the face basis point. 
To clarify this, the process will be explained using the case 
of the unity cube mentioned above. 

First, point 1 (0,0,0) is chosen as basis point. 
Examining the face data, we find, that faces 4, 5 and 6 have 
to be processed. Faces 1,2 and 3 need not to be processed, 
because they contain our basis point. 

Corner 2 is chosen as face basis point on face 4. 
Therefore, the first tetrahedron consist of corners 1 (basis 
point), 2 (face basis point) 4 (adjacent point c1) and 8 (point 
c2). Using the corner data, the tetrahedron becomes 
(0,0,0),(0,0,1),(0,1,1),(1,1,1). 

The second tetrahedron is described by the points 1,2,8 
and 6. There is no additional tetrahedron, because the corner 
adjacent to corner 6 is the face basis point. 

In total we get 6 tetrahedrons described in the following 
table: 
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No Point 1 Point 2 Point 3 Point 4 
1 (0,0,0) 
1 (0,0,0) 
1 (0,0,0) 
1 (0,0,0) 
1 (0,0,0) 
1 (0,0,0) 

2 (0,0,1) 
2 (0,0,1) 
3 (0,1,0) 
3 (0,1,0) 
5 (1,0,0) 
5 (1,0,0) 

4 (0,1,1) 
8 (1,1,1) 
4 (0,1,1) 
8 (1,1,1) 
6 (1,0,1) 
8 (1,1,1) 

8 (1,1,1) 
6 (1,0,1) 
8 (1,1,1) 
7 (1,1,0) 
8 (1,1,1) 
7 (1,1,0) 

Conclusion 

In this paper, a method for calculating control values for a 
multiprimary display has been proposed. Contrary to a 
method proposed in (1), that required multispectral images 
as input, the new method is applicable to images using 
tristimulus color information. 

Similar methods for images with tristimulus color 
information have been proposed before. Like the method 
proposed in this paper, these methods lead to an exact color 
match for the standard observer. However, the earlier 
methods frequently caused visible artifacts for non-standard 
observers. This can be avoided by using the method 
described in this paper. 

The central idea of the new method is to define the 
volume of control values that lead to the desired tristimulus 
values for the standard observer. While any point of this 
volume may be chosen if only the standard observer is 
considered, the new method chooses the device control 
vector in such a way, that a gradual change of the input 
tristimulus vector leads to a gradual change of the device 
control vector, and, therefore, to a gradual change of the 

spectrum used to display the color. Thus, visible artifacts 
are avoided. 

The point chosen from the volume of possible solutions 
is the center of gravity of this volume. This is done, because 
a gradual change of the input tristimulus values causes only 
a gradual change of the volume and therefore of the center 
of gravity. 
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